This book has been written in a quite huge period by a quite huge group of different people coming from with different experiences and countries. It put together a long story of real and theoretical on this subject collected by the authors. Both reliability issues applied to utility networks and to user installations and equipment are becoming every day more and more important because of growing dependency of every human activity from electrical energy as well as increased number of sensitive loads and nonprogrammable energy sources. The book can serve as a reference book for teachers and a handbook for students on regular university courses, and as a guidebook for people who seek background information on practical solutions to reliability problems. The unique character of the book is a well-balanced one between a scientific approach and practical knowledge which can be used in everyday situations by people who have only a fundamental electrical engineering background.
W monografii omówiono szeroko rozumianą niezawodność zasilania odbiorców energii elektrycznej w systemach elektroenergetycznych - opisano parametry i wskaźniki niezawodności, podano definicje przerw w zasilaniu i ich rodzaje, przedstawiono zasadnicze charakterystyki niezawodności układów sieci oraz napowietrznych i kablowych linii elektroenergetycznych. Prezentowane pojęcia i definicje oparto na literaturze, a przede wszystkim - na międzynarodowym słowniku IEV (International Electrical Vocabulary IEC 60050). Zagadnienie pewności zasilania scharakteryzowano jako miarę zaufania użytkownika do systemu zasilania. Niezawodność rozpatrywana jest zarówno z perspektywy odbiorcy (jego zapotrzebowanie na moc i energię, charakter funkcjonowania, skutki przerw w dostawie), jak i przedsiębiorstwa energetycznego (standardy jakościowe, ich weryfikacja w kontekście niezawodności zasilania). Analizę pewności zasilania wybranych obciążeń elektrycznych zilustrowano przykładami pomiarów przebiegu napięć i prądów, rejestrowanych w czasie testów sprawdzających poprawność działania układu zasilania centrum danych i innych wybranych obiektów. Książka przeznaczona przede wszystkim dla inżynierów zajmujących się tematyką jakości zasilania energii elektrycznej, ale także dla studentów studiów podyplomowych i doktorantów na kierunkach związanych z elektrotechniką, elektroniką czy automatyką.
- Spis treści
-
Opening notes 11
1. Introduction 13
1.1. Basic concepts and parametrization 15
1.1.1. Failure 15
1.1.2. Outage 16
1.1.3. Reliability 16
1.1.4. Failure rate λ(t) 18
1.1.5. Instantaneous availability A(t) 18
1.1.6. Availability (stationary) 18
1.1.7. MTTFF 19
1.1.8. MTTR 19
1.1.9. MTTF 19
1.1.10. MTBF 20
1.1.11. Continuity 20
1.1.12. Dependability 21
1.1.13. Resiliency 21
1.1.14. Recoverability 21
1.1.15. Maintainability 22
1.1.16. Maintenance support performance 22
1.1.17. Durability 22
1.1.18. Redundancy 22
1.1.19. Independence 23
1.1.20. Sparsity 26
1.2. Voltage interruptions and dips 26
1.2.1. Long interruptions 27
1.2.1.1. Causes 28
1.2.1.2. Standards 29
1.2.2. Short interruptions and dips 30
1.2.2.1. Causes 32
1.2.2.2. Standards 35
1.3. Effects 41
1.3.1. Effects on electrical equipment 42
1.3.1.1. IT equipment and control systems 42
1.3.1.2. Contactors and relays 44
1.3.1.3. Induction motors 44
1.3.1.4. Synchronous motors 45
1.3.1.5. Variable speed drives 45
1.3.1.6. High pressure discharge lamps 46
1.4. Dependability calculation 46
1.5. Dependability estimation 49
1.6. Costs 49
2. User side dependability 51
2.1. Load and supply classification 52
2.1.1. Load classification 52
2.1.2. Supply classification 55
2.2. Parameters and standards 55
2.2.1. Parameters 55
2.2.2. Standards 56
2.3. Improving dependability 58
2.4. Distribution schemes 59
2.4.1. Basic schemes 60
2.4.1.1. Shunted 60
2.4.1.2. Simple radial 60
2.4.1.3. Ring 62
2.4.1.4. Double radial 63
2.4.1.5. Meshed 65
2.4.1.6. Compound 65
2.4.2. General criteria for the choice of the scheme 65
2.4.2.1. Parameters and basic conditions 65
2.4.2.2. Scheme of the grid as a link between supplies and loads 66
2.4.2.3. The system supply section and end section 68
2.4.2.4. The standard and preferential functions 68
2.4.2.5. Bottlenecks 69
2.4.2.6. Uniform availability and limit of tight of the components 70
2.4.2.7. Redundancy of protections 70
2.4.2.8. Resilience and flexibility – capability of replacement 71
2.4.2.9. Power reserve 72
2.5. Supplementary supply 73
2.5.1. Public network 75
2.5.2. Additional power supply line 75
2.5.3. Power electronic fast transfer systems 76
2.5.4. Solid state breakers 77
2.5.5. UPS or absolute continuity systems 78
2.5.5.1. Static UPS 79
2.5.5.2. Voltage and Frequency Independent UPS (VFI) 82
2.5.5.3. Voltage and Frequency Dependent UPS (VFD) 92
2.5.5.4. Voltage Independent UPS (VI) 94
2.5.5.5. DELTA UPS 97
2.5.6. Solutions for increasing the reliability and power scalability of UPS 99
2.5.6.1. A standby UPS 100
2.5.6.2. UPS parallel configuration 102
2.5.6.3. UPS series configuration 106
2.5.6.4. Redundant distributed system and parallel operation of uninterruptible power supply systems 106
2.5.6.5. UPS with spinning reserve 106
2.5.7. Dynamic UPS 108
2.5.7.1. Size selection 109
2.5.7.2. Site location 109
2.5.8. Generator sets 110
2.5.8.1. Primary motor 110
2.5.8.2. Synchronous generator 112
2.5.8.3. Transition 114
2.5.8.4. AMF panel 116
2.5.8.5. Generator set frame 117
2.5.8.6. Size selection 117
2.6. Energy storage systems 118
2.6.1. Superconducting magnetic energy storage systems 124
2.6.2. Supercapacitors 126
2.6.3. Flywheel energy storage systems 127
2.6.4. Battery electrochemical energy storage 129
2.6.4.1. Lead-Acid batteries 129
2.6.4.2. Lithium-ion (Li-ion) batteries130
2.6.4.3. Nickel-based batteries 131
2.6.4.4. Metal-Air batteries 132
2.6.4.5. Sodium sulfur (NaS) batteries 133
2.6.4.6. Flow batteries 133
2.6.5. Pumped storage power plants 134
2.6.6. The role of energy storage systems in power system 135
2.7. Critical infrastructures 140
2.7.1. Hospitals 141
2.7.1.1. Dependability demand 141
2.7.1.2. Electrical distribution design principles 146
2.7.1.3. Typical solutions 147
2.7.2. Data centers 149
2.7.2.1. Dependability demand 150
2.7.2.2. Electrical distribution design principles 152
2.7.2.3. Typical solutions 153
2.7.3. High buildings 159
2.7.3.1. Dependability demand 160
2.7.3.2. Electrical sources for safety services 161
2.7.3.3. Circuits of safety services 163
2.7.3.4. Emergency escape lighting 164
2.7.3.5. Fire protection applications 166
2.7.3.6. Documentation 167
2.7.3.7. Electrical distribution design principles 167
2.7.3.8. Typical solutions 167
2.7.4. Office building 171
2.7.4.1. Description of existing situation 171
2.7.4.2. Distribution scheme 171
2.7.4.3. Lines 173
2.7.4.4. Load 173
2.7.4.5. Power quality 173
2.7.4.6. Events 175
2.7.4.7. Analysis – initial situation 175
2.7.4.8. Distribution scheme 175
2.7.4.9. Line overheating 175
2.7.4.10. Coordination among protective devices and lines 175
2.7.4.11. Design approach 176
2.7.4.12. Load classification 176
2.7.4.13. Main distribution schemes 176
2.7.4.14. Line sizing 179
2.7.4.15. Cost analysis 180
2.7.4.16. Lesson learned 181
3. Supply side reliability 182
3.1. Parameters and indicators of power supply reliability 183
3.2. Definitions and types of interruptions monitored 184
3.3. The reliability indicators used 190
3.3.1. System Average Interruption Frequency Index – SAIFI 190
3.3.2. Customer Interruption – CI 191
3.3.3. Transformer SAIFI – T-SAIFI 191
3.3.4. System Average Interruption Duration Index – SAIDI 191
3.3.5. Transformer SAIDI – T-SAIDI 191
3.3.6. Customer Minutes Lost – CML 191
3.3.7. Momentary Average Interruption Frequency Index – MAIFI 192
3.3.8. Customer Average Interruption Duration Index – CAIDI 192
3.3.9. Customer Average Interruption Frequency Index – CAIFI 192
3.3.10. Customer Total Average Interruption Duration Index – CTAIDI 193
3.3.11. Equivalent Interruption Time Related
to the Installed Capacity – TIEPI 193
3.3.12. Equivalent Number of Interruptions – NIEPI 194
3.3.13. Average Service Availability Index – ASAI 194
3.3.14. Average Service Unavailability Index – ASUI 195
3.3.15. Average System Interruption Duration Index – ASIDI 195
3.3.16. Average System Interruption Frequency Index – ASIFI 195
3.3.17. Average Energy Not Supplied – AENS 196
3.3.18. Energy Not Distributed – END 196
3.3.19. Energy Not Supplied – ENS 196
3.3.20. Average Interruption Time – AIT 196
3.3.21. Average Interruption Frequency – AIF 197
3.3.22. Average Interruption Duration – AID 197
3.3.23. System Average Restoration Index – SARI 197
3.4. Standards 197
3.4.1. Technical solutions for CoS topologies 200
3.4.2. Open grids 202
3.4.3. Closed grids 203
3.4.4. Technical methods 208
3.4.5. Organizational and technical methods 210
3.5. Distributed generation 212
4. Combined supply and user side dependability – case studies 218
4.1. Case study no. 1 218
4.1.1. Description of the facility 218
4.1.2. The quality of the supply voltage 220
4.1.3. Air conditioning 220
4.1.4. Installed power capacity 222
4.1.5. Fire protection systems 223
4.1.6. Protection against unauthorized access 223
4.1.7. Reliability of power delivery 224
4.1.7.1 External network 224
4.1.7.2. Distribution of MV in the power plant part 225
4.1.7.3. Distribution of MV in the user part 226
4.1.7.4. Internal network 226
4.1.7.5. Transformers 229
4.1.7.6. Generator 229
4.1.8. The system activating the reserve 229
4.1.9. Static UPS 230
4.1.10. Motor-generator system 231
4.1.11. Power supply system 232
4.1.12. Tests 233
4.1.12.1. Stage 1 233
4.1.12.2. Stage 2 240
4.2. Case study no. 2 250
4.3. Case study no. 3 252
4.4. Case study no. 4 253
4.5. Case study no. 5 256
4.6. Case study no. 6 271
4.6.1. Test A – Dynamic load power variation in the presence of mains supply 275
4.6.2. Test B – Dynamic variation of load power in the absence of mains supply 279
4.6.3. Test C – UPS operating time in the absence of voltage at the UPS input 281
4.6.4. Test D – Assessment of the output voltage parameters 286
4.6.5. Test E – Evaluation of the battery charging time after full discharge 291
4.6.6. Test F – Correctness of notification mechanisms of power supply failure 294
4.6.7. Test G – Battery depletion signal to switching off the UPS output voltage 298
4.6.8. Tests summary and conclusions 301
References 307