Table of contents

	Streszczenie	7
	Summary	9
	Table of symbols and designations	11
1.	Introduction	15
2.	Modelling of hot deformation behaviour	20
	2.1. Deformation mechanism map based upon Frost and Asby	21
	2.2. Raj maps – atomistic model	23
	2.3. Polar reciprocity model	23
	2.4. Kinetic analysis – the Zener–Hollomon parameter	24
3.	Dynamic Material Model	27
	3.1. Prasad's criterion	31
	3.2. Murty's criterion	32
	3.3. Gegel's criterion	33
	3.4. Alexander/ Malas criterion	35
	3.5. Semiatin and Lahoti criterion	35
	3.6. Activation energy map	36
	3.7. Modelling of material behaviour – process modelling	37
4.	Genesis, objective and thesis of the work	46
5.	Methodology and programme of research	50
6.	Characteristics of the investigated materials	54
	6.1. Mechanical properties	58
	6.2. Dilatometric analysis	58
	6.3. Plastometric testing	60
7.	Processing maps in accordance with the Prasad's criterion	63

Published by AGH University of Science and Technology Press

Editor-in-Chief: Jan Sas

Editorial Committee: *Tomasz Szmuc* (Chairman), *Marek Capiński*, *Jerzy Klich*, *Witold K. Krajewski*, *Tadeusz Sawik*, *Mariusz Ziółko*

Reviewers: Prof. dr hab. inż. Krzysztof M. Abramski Prof. dr hab. inż. Stanisław Kuta

Author of the present monograph is an employee of the Department of Electronics, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland.

© Wydawnictwa AGH, Kraków 2011 ISSN 0867-6631 ISBN 978-83-7464-408-2

Desktop Publishing: "Andre", tel. 12 422 83 23

Publishers Office

Redakcja Wydawnictw AGH al. Mickiewicza 30, 30-059 Kraków tel. 12 617 32 28, tel./faks 12 636 40 38 e-mail: redakcja@wydawnictwoagh.pl http://www.wydawnictwa.agh.edu.pl

Contents

	Streszczenie	7
	Summary	9
	List of symbols	11
1.	Introduction	13
2.	Microwave directional couplers, power dividers and phase shifters	21
	2.1. Directional couplers and power dividers	
	with directly connected transmission lines	22
	2.2. Directional couplers and phase shifters	
	utilizing coupled transmission lines	29
	2.2.1. Single-section coupled-line directional couplers	29
	2.2.2. Multisection coupled-line directional couplers	34
	2.2.3. Broadband phase shifters	35
	2.2.4. Design of coupled-strip-transmission-line directional couplers	
	and phase shifters with improved frequency response	38
	2.3. Summary	42
3.	Directional couplers in application	
	to balanced and <i>n</i> -way microwave circuits	43
	3.1. Balanced and <i>n</i> -way microwave circuits	44
	3.2. Large signal characterization of solid-state devices	51
	3.3. Asymmetric coupled-line directional couplers	
	as impedance transformers in balanced and <i>n</i> -way power amplifiers	58
	3.4. Approach to the design of asymmetric coupled-line	
	impedance transforming directional couplers	70
	3.5. Broadband asymmetric coupled-line impedance	
	transforming directional couplers	81
	3.6. Summary	86

4.	Broadband Butler matrices	
	utilizing coupled-line directional couplers	88
	4.1. Butler matrices utilizing single-section coupled-line	
	directional couplers	92
	4.1.1. 4 × 4 Butler matrix	92
	4.1.2. 8 × 8 Butler matrix	96
	4.2. Butler matrices utilizing multisection coupled-line	
	directional couplers	102
	4.3. Butler matrices with the use of $0/180^{\circ}$ directional couplers	129
	4.4. Summary	136
5.	Design of miniaturized broadband directional couplers	139
	5.1. Miniaturization techniques	
	in the design of microwave directional couplers	139
	5.2. Design of broadband quasi-lumped directional couplers	145
	5.3. Summary	161
6.	Final remarks	163
	References	165

KRZYSZTOF WINCZA Projektowanie układów mikrofalowych wykorzystujących szerokopasmowe sprzęgacze kierunkowe

Streszczenie

W niniejszej monografii przedstawione zostały zagadnienia związane z projektowaniem złożonych sieci mikrofalowych wykorzystujących szerokopasmowe sprzęgacze kierunkowe. Przedstawione zostały następujące trzy różne aspekty projektowania i zastosowań szerokopasmowych sprzęgaczy o liniach sprzężonych:

- 1. Projektowanie sprzęgaczy o liniach sprzężonych transformujących impedancję.
- 2. Projektowanie szerokopasmowych macierzy Butlera wykorzystujących sprzęgacze o liniach sprzężonych.
- 3. Projektowanie zminiaturyzowanych szerokopasmowych sprzęgaczy kierunkowych z wykorzystaniem techniki elementów quasi-skupionych.

Wymienione obszary zostały dogłębnie przeanalizowane przez Autora monografii na przestrzeni ostatnich kilku lat. W szczególności przeanalizowana została możliwość zastosowania asymetrycznych sprzęgaczy kierunkowych w zrównoważonych wzmacniaczach mocy mikrofalowej oraz w układach z sumowaniem mocy, biorąc pod uwagę możliwy do pozyskania stosunek impedancji obciążenia we wrotach wejściowych i wyjściowych. Główną zaletą zaproponowanych rozwiązań jest możliwość jednoczesnej realizacji funkcji podziału mocy i dopasowania impedancyjnego w jednym układzie. Przeanalizowane zostały zarówno układy jednosekcyjnych jak i wielosekcyjnych asymetrycznych sprzęgaczy kierunkowych i wyprowadzone zostały zależności opisujące możliwy do pozyskania w tych układach stosunek impedancji.

Kolejnym przedstawionym w pracy zagadnieniem jest projektowanie szerokopasmowych macierzy Butlera. Opisana została metoda projektowania takich układów z wykorzystaniem wielosekcyjnych sprzęgaczy kierunkowych o liniach sprzężonych. Zaprezentowana została także, opracowana przez Autora, metoda realizacji szerokopasmowych przesuwników fazy o stałym różnicowym przesunięciu fazy wykorzystywanych w układach macierzy Butlera. Przeprowadzone analizy wykazały, że projektowanie szerokopasmowych macierzy Butlera wykorzystujących wielosekcyjne sprzęgacze o liniach sprzężonych wymaga zastosowania sekcji 'C' przesuwników fazy Schiffmana w celu minimalizacji rozrównoważenia charakterystyk fazy różnicowej. Dodatkowo, w pracy zaproponowane zostało nowe rozwiązanie układowe pozwalające na realizację w pełni planarnej, zintegrowanej macierzy Butlera 8 × 8. Ostatnim zagadnieniem przestawionym w monografii jest metoda projektowania szerokopasmowych zminiaturyzowanych sprzęgaczy kierunkowych, zaproponowana przez Autora, w której znaczne zmniejszenie rozmiaru realizowanych układów pozyskuje się poprzez zastosowanie techniki elementów quasi skupionych. Opracowana metoda pozwala na realizację miniaturowych sprzęgaczy kierunkowych cechujących się parametrami porównywalnymi ze sprzęgaczami zrealizowanymi w technice sprzężonych linii transmisyjnych. Ponadto, metoda ta umożliwia pozyskanie szerokiego pasma pracy, ze względu na fakt, że pozwala na projektowanie wielosekcyjnych, zminiaturyzowanych sprzęgaczy kierunkowych.

Przedstawione w pracy analizy teoretyczne zostały potwierdzone poprzez pomiary wykonanych modeli zaprojektowanych i wykonanych układów mikrofalowych.

KRZYSZTOF WINCZA Design of Microwave Networks with Broadband Directional Couplers

Summary

The monograph focuses on the design of complex microwave networks with the use of broadband coupled-line directional couplers. Three different areas of the design and application of such couplers have been addressed, which are:

- 1. Design of coupled-line impedance transforming directional couplers.
- 2. Design of broadband Butler matrices utilizing coupled-line directional couplers.
- 3. Design of miniaturized directional couplers with the use of quasi-lumped-element technique.

All aspects have been comprehensively researched by the Author over the recent years. In particular, the application of asymmetric coupled-line directional couplers in balanced and *n*-way power amplifiers has been described, and the design of such circuits has been shown with the emphasis on their impedance transforming capability. The major advantage of the proposed approach is that it allows to realize both power dividing and impedance matching within a single component. Single-section and multi-section impedance transforming directional couplers are analyzed and the achievable impedance transformation ratio for such couplers is derived.

The second issue presented in the monograph concerns the design of broadband Butler matrices. A method for the design of broadband Butler matrices utilizing coupled-line directional couplers is presented, in which multisection symmetrical coupled-line directional couplers are used. The method proposed by the Author of broadband differential phase shifters' realization for applications in such networks, is outlined. It is shown, that the design of broadband Butler matrices with the use of multisection directional couplers requires applying of Schiffman 'C'-sections in order to minimize the phase imbalance of the resulting network. Moreover, a novel arrangement of an 8×8 Butler matrix is proposed, that allows for planar fully integrated realization.

Finally, the design method of miniaturized broadband directional couplers, developed by the Author, is described, in which a quasi-lumped-element technique is used. The proposed approach allows for achieving the frequency response of miniaturized couplers comparable to the response of their distributed counterparts. Moreover, the method allows for achieving broad bandwidths, due to its suitability for the design of multisection miniaturized directional couplers.

The presented theoretical analyses have been confirmed by the measurements of a number of manufactured coupled-line networks.

List of symbols

- β phase constant
- Γ reflection coefficient
- ϵ_0 permittivity of free space
- μ_0 permeability of free space
- λ_0 free space wavelength
- λ_g guided wavelength
- θ_0 electrical length

 v_{pe} , v_{po} – even, odd mode phase velocity

 ε_r – dielectric constant (relative permittivity)

 ε_{ree} , ε_{reo} – effective dielectric constant (relative permittivity) for even, odd mode

- BW operational bandwidth
 - C capacitance matrix
 - c free space light velocity
 - C coupling

 $C_{1,2}$ – per unit length capacitance of line 1, 2

 C_e, C_o – per unit length even, odd mode capacitance of coupled lines

 C_m – per unit length mutual capacitance of coupled lines

- D directivity
- I isolation
- IL insertion losses
 - k coupling coefficient

 k_L, k_C – inductive, capacitive coupling coefficient

L – inductance matrix

l – length of a coupled-line section

 $L_{1,2}$ – per unit length self inductance of line 1, 2

 L_m – per unit length mutual inductance of coupled lines

R – impedance ratio of the transformer

RL - return losses

S – scattering matrix

 $S^{e,o}$ – scattering matrix for even and mode excitation

T – transmission

 Z_0 – characteristic impedance

 Z_{0e}, Z_{0o} – even, odd mode characteristic impedance

 $Z_{T1,2} - 1^{\text{st}}, 2^{\text{nd}}$ line terminating impedance

VSWR - voltage standing wave ratio