Spis treści

	Wstęp
•	1.1. Rys historyczny
	1.2. Klasyfikacja automatów
	1.3. Automaty komórkowe a modelowanie zjawisk mikrostrukturalnych
	1.4. Automaty komórkowe a problemy związane z ich stosowaniem
	Algorytmy rozrostu ziarna
	2.1. Klasyczny algorytm rozrostu ziarna
	2.2. Algorytm rozrostu ziarna z zastosowaniem losowych reguł
	2.3. Algorytm rozrostu ziarna ze sterowaniem prędkości rozrostu
	2.4. Izotropia przestrzeni
	2.4.1. Algorytm dla niezmiennych warunków rozrostu ziarna
	2.4.2. Algorytm uwzględniający zmienną prędkość rozrostu2.4.3. Algorytm uwzględniający odkształcenie
	lub dowolny kształt komórek
	2.4.4. Zmodyfikowany algorytm do wyznaczenia czasu przejścia
	2.5. Sterowanie kształtem rosnącego ziarna
	2.5.1. Globalne i lokalne współrzędne ziarna
	2.5.2. Algorytm rozrostu ziarna w kształcie kuli
	2.5.3. Algorytm rozrostu ziarna w kształcie elipsoidy
	2.5.4. Algorytm rozrostu ziarna w kształcie prostopadłościanu
	2.5.5. Algorytm rozrostu ziarna w kształcie ośmiościanu
	2.5.6. Algorytm rozrostu ziarna w kształcie walca
	Warunki brzegowe i reorganizacja przestrzeni komórkowej
	3.1. Wymagania stawiane warunkom brzegowym
	3.2. Warunki brzegowe
	przy stałej topologii automatów komórkowych

	3.3.	Warunki brzegowe	
		przy zmiennej topologii automatów komórkowych	75
		3.3.1. Odrzucenie połowy modelowej przestrzeni (halving)	76
		3.3.2. Przecinanie i składanie przestrzeni (cutting and bonding)	80
		3.3.3. Podwojenie przestrzeni	83
		3.3.4. Wyprostowanie przestrzeni automatów komórkowych	84
	3.4.	Wskazówki do wyboru warunków brzegowych	85
4.		cacowanie i zastosowanie frontalnych automatów komórkowych	87
	4.1.	Konwencjonalne automaty komórkowe	87
		Frontalne automaty komórkowe	89
	4.3.	Przykłady oszacowań nakładów obliczeniowych	94
	4.4.	Uniwersalny frontalny automat komórkowy	95
5.		ygotowanie danych do tworzenia siatki	
		ody elementów skończonych	101
	5.1.	Zasady przygotowania danych	101
		5.1.1. Wczytywanie informacji o mikrostrukturze	103
		5.1.2. Sprawdzenie ciągłości ziaren	103
		5.1.3. Eliminacja zbyt drobnych ziaren	106
		5.1.4. Stworzenie listy komórek leżących na granicach ziaren	106
		5.1.5. Lista płaszczyzn styku ziaren	106
		5.1.6. Uporządkowanie ścianek komórek	
		na powierzchni styku dwóch ziaren, sprawdzenie ich ciągłości	
		i wyznaczenie konturu każdej płaszczyzny	107
		5.1.7. Stworzenie listy linii dla każdej płaszczyzny	108
		5.1.8. Stworzenie listy wszystkich linii	109
		5.1.9. Algorytm sprawdzania linii	109
		5.1.10. Stworzenie i wypełnienie listy linii dla każdego ziarna	111
		5.1.11. Stworzenie i wypełnienie listy wierzchołków	111
		5.1.12. Stworzenie i wypełnienie listy wierzchołków	
		dla każdej płaszczyzny i ziarna	
		oraz list płaszczyzn i ziaren dla każdego wierzchołka	112
		5.1.13. Zapisywanie wyników do plików	112
	5.2.	Przykłady siatek MES	114
	Czę	ść druga. Modelowanie zjawisk mikrostrukturalnych	115
6.	Mo	delowanie początkowej mikrostruktury o zadanych parametrach	117
		Zasady i struktura modelu kształtowania	
		początkowej mikrostruktury	117
	6.2	Wybór, określenie warunków symulacji i symulacja	118

	6.3. Uzyskanie mikrostruktury o zadanym rozkładzie wielkości ziaren	126
	6.3.1. Przedstawienie rozkładu teoretycznego	
	w postaci szeregu rozdzielczego	126
	6.3.2. Wyznaczenie liczby ziaren,	
	reprezentatywnej objętości modelowej,	
	sprawdzenie rozmiarów przestrzeni komórkowej	127
	6.3.3. Zadanie warunków zarodkowania	128
	6.3.4. Modelowanie mikrostruktury	
	i wyznaczenie empirycznego rozkładu wielkości ziarna	128
	6.3.5. Porównanie rozkładu empirycznego z teoretycznym,	
	wyznaczenie błędu dopasowania	129
	6.3.6. Sprawdzenie kryterium dopasowania	
	i korekta warunków zarodkowania	130
	6.3.7. Obliczenia końcowe prędkości zarodkowania	
	oraz modelowanie sprawdzające	133
	6.3.8. Określenie warunków zarodkowania	134
	6.4. Przykład symulacji mikrostruktury i wyniki	137
	6.5. Orientacja krystalograficzna ziaren	142
	6.5.1. Dopasowanie rozkładu i orientacja ziaren	142
	6.5.2. Dopasowanie rozkładu kąta dezorientacji granic ziaren	143
	6.5.3. Dopasowanie rozkładu oraz orientacja ziaren	
	i kąta dezorientacji granic	145
7	Krzepnięcie	146
٠.	7.1. Model FCA do modelowania makrostruktury podczas krzepnięcia	146
	7.2. Założenia wstępne	149
	7.3. Modelowanie zjawiska zmiany stanu skupienia materiału	177
	(krystalizacja)	151
	Uwzględnienie pola temperatury podczas modelowania krzepnięcia	157
	7.4. Opis modułu FCA	159
	7.5. Wyniki modelowania	161
	7.5.1. Modelowanie wlewków za pomocą FCA	101
	o dużej liczbie komórek	161
	7.5.2. Wyznaczenie parametrów zarodkowania	166
	Modyfikacji programu FCA	
	7.6. Weryfikacja modelu i jego optymalizacja	100
	ze względu na nakłady obliczeniowe	173
	ze wzgiędu na naktady obneżeniowe	175
8.	Rekrystalizacja	183
	8.1. Rozwój metod badania i modelowania rekrystalizacji	183
	8.2. Główne założenia do modelowania rekrystalizacji	187
	8.3. Podstawowe modele	188
	8.3.1. Rozwój dyslokacji	188

	8.3.2. Naprężenie uplastyczniające	190
	8.3.3. Zarodkowanie	
	8.3.4. Rozrost ziaren	194
	8.4. Kinetyka rekrystalizacji	197
	8.4.1. Warunki brzegowe	197
	8.4.2. Wymiar przestrzeni	198
	8.4.3. Kształt ziaren	202
	8.5. Rekrystalizacja statyczna	
	8.5.1. Zarodkowanie przy rekrystalizacji statycznej	
	8.5.2. Kinetyka rekrystalizacji statycznej	
	8.6. Rekrystalizacja dynamiczna	
	8.6.1. Zarodkowanie i rozrost ziaren	
	8.6.2. Uwzględnienie geometrii odkształcenia	
	8.6.3. Naprężenie uplastyczniające	
	8.6.4. Rekrystalizacja metadynamiczna	
	8.7. Wielkość ziarna	
	8.8. Kierunki dalszych badań rekrystalizacji	228
9.	Przemiany fazowe w stanie stałym	230
	9.1. Podstawowe wiadomości o przemianach fazowych w stali	
	9.2. Modelowanie przemian fazowych	
	9.3. Model przemian fazowych	
	9.4. Wyniki modelowania wstępnego	
1 1	Doodnohuisuis miliusstuultuur	242
ıv.	Rozdrobnienie mikrostruktury	
	10.1. Materiary drobiloziarinste	243
	i własności mechanicznych materiałów silnie rozdrobnionych	246
	10.2.1. Modele oparte o metodę elementów skończonych:	2 4 0
	MES I i MES II	247
	10.2.2. Automaty komórkowe	
	10.2.3. Zastosowanie teorii plastyczności kryształów	
	10.2.4. Naprężenie uplastyczniające	
	10.2.5. Model oparty o metodę elementów dyskretnych	
	10.3. Modele automatów komórkowych	
	10.3.1. Model I	
	10.3.2. Model II	255
	10.3.3. Model III	255
	10.4. Weryfikacja parametrów automatów komórkowych	
	10.5. Zastosowanie opracowanego modelu	
	do przeprowadzenia testowych obliczeń	257
	10.5.1. Walcowanie pakietowe	257
	10.5.2. Symulacja procesu MAXStrain [®]	263

11.	Przykłady zastosowania frontalnych automatów komórkowych	
	do modelowania mikrostruktury w procesie walcowania	266
	11.1. Procesy wieloetapowego odkształcenia	
	(walcowanie w wykrojach)	267
	11.1.1. Warunki symulacji	268
	11.1.2. Charakterystyka materiału	269
	11.1.3. Wyniki modelowania MES	269
	11.1.4. Modelowanie rozwoju mikrostruktury	271
	11.2. Walcowanie wyrobów płaskich	278
	11.2.1. Dane wejściowe	279
	11.2.2. Wyniki symulacji	280
	Podsumowanie części drugiej. Analiza wyników badań teoretycznych	285
	Część trzecia. Praktyczny kurs automatów komórkowych	289
	Ćwiczenia laboratoryjne 1. Automaty komórkowe. Podstawowe pojęcia.	
	Jednowymiarowe CA. Lokalne reguły	293
	Ćwiczenia laboratoryjne 2. Jednowymiarowe CA.	
	Synchroniczne i asynchroniczne CA	297
	Ćwiczenia laboratoryjne 3. Dwuwymiarowe CA	302
	Ćwiczenia laboratoryjne 4. Otoczenie (Sąsiedztwo)	308
	Ćwiczenia laboratoryjne 5. Sterowanie prędkością rozrostu.	
	Izotropia przestrzeni	312
	Ćwiczenia laboratoryjne 6. Frontalne automaty komórkowe	316
	Ćwiczenia laboratoryjne 7. Kształt ziaren. Prostokąt	321
	Ćwiczenia laboratoryjne 8. Początkowa mikrostruktura	324
	Ćwiczenia laboratoryjne 9. Granice ziaren. Warunki brzegowe	326
	Ćwiczenia laboratoryjne 10. Otwarte warunki brzegowe. Krok czasowy	
	Ćwiczenia laboratoryjne 11. Rozwój mikrostruktury. Przemiana fazowa	333
	Literatura	335