Quantitative Methods in Logistics Management | Wydawnictwo AGH Przejdź do treści

Banery wysuwane

Quantitative Methods in Logistics Management

Dyscyplina
nauki ekonomiczne » nauki o zarządzaniu
ISBN
978-83-7464-713-7
Typ publikacji
monografia
Format
B5
Oprawa
miękka
Liczba stron
144
Rok wydania
2014
Spis treści

1. Advanced planning of product availability in the supply chain  7
1.1. Product availability in the supply chain  7
1.2. Operating procedure for supply chain planning  7
1.3. Production planning and inventory  8
1.4. Supply and inventory planning  9
1.5. Integrated production planning, delivery and inventory  14
1.6. Proposals of decision models in PIDP  16
1.7. Summary  20
References  21
2. Delays in assembly line balancing problem  24
2.1. Introduction  24
2.2. Two-sided assembly line balancing problem  25
2.3. Heuristic approach  27
2.3.1. Grouping tasks  27
2.3.2. Groups assignment  28
2.3.3. Final procedures  29
2.4. Quality measures of final performance  32
2.5. Conclusions  35
References  35
3. Simulation modeling of logistics processes – input data problems  37
3.1. Introduction  37
3.2. Input modeling for simulation – motivation  38
3.3. Simulation models of complex logistic processes  38
3.4. Input data classification  38
3.4.1. Main data issues  39
3.4.2. Sources for input data  41
3.5. Sample analysis of input data  44
3.6. Bootstrap sampling  50
3.7. Summary  51
References  51
4. Mathematical models of time computing in two-dimensional order-picking process in high-bay warehouses   55
4.1. Introduction  55
4.2. Mathematical models  58
4.2.1. The first mathematical model  59
4.2.2. The second mathematical model  60
4.3. Results and its examination  61
4.3.1. Study of example data set  62
4.4. Summary  67
References  68
5. The cost accounting in logistics processes  70
5.1. Introduction  70
5.2. The risk and the value added  71
5.3. Logistic processes and value creation  73
5.4. The methods of the measurement of the value added in logistic processes  74
5.5. The application of the characterization principle in the risk assessment in logistic processes  77
5.6. Conclusions  85
References  86
6. Dependability analysis of logistic systems – concept of modified FFMEA method  88
6.1. Introduction  88
6.2. The basic terminology of dependability  88
6.3. Dependability measures  90
6.3.1. Reliability performance measures  90
6.3.2. Maintainability performance measures  91
6.3.3. Availability performance measures  92
6.4. Chosen methods of reliability analysis  92
6.4.1. Reliability block diagram (RBD)  93
6.4.2. Fault tree analysis (FTA)  94
6.4.3. Event tree analysis (ETA)  96
6.4.4. Fault modes, effects and criticality analysis FMECA  97
6.5. Concept of modify FMEA  99
6.5.1. Fuzzy decision support system  100
6.6. Conclusions  104
References  105
7. Assessing and building the resilient supply chains  106
7.1. Characteristics of resilient supply chains  106
7.1.1. Definition of supply chain  106
7.1.2. Definition of resilience  107
7.1.3. Definition of resilient supply chain 108
7.2. Assessing the supply chain resilience  109
7.2.1. Preliminary analysis  109
7.2.2. Supply chain analysis  110
7.2.3. Business environment analysis  110
7.2.4. Vulnerability analysis  111
7.2.5. Resilience capabilities analysis  113
7.2.6. Taxonomy development  114
7.2.7. Evaluation  115
7.3. Building the supply chain resilience  115
7.3.1. Design of supply chain  117
7.3.2. Design of processes  117
7.3.3. Design of relationships  118
References  118
8. Intelligent decision making in transportation and logistics systems  121
8.1. Introduction  121
8.1.1. The purpose of the chapter  121
8.1.2. The role of intelligence in decision making  121
8.2. Selected techniques for intelligent decision making  124
8.2.1. Artificial Neural Networks  124
8.2.2. Multiple Criteria Decision Making  124
8.2.3. Fuzzy Logic  125
8.2.4. Case-based reasoning  125
8.2.5. Agent-based systems  126
8.2.6. Metaheuristics and evolutionary computation  126
8.2.7. Rough set theory  127
8.3. Application of intelligent decision making techniques in transportation  130
8.3.1. Optimisation of fleet composition problem using metaheuristics and evolutionary computation  130
8.3.1.1. Problem definition  130
8.3.1.2. Mathematical formulation  131
8.3.1.3. Computer implementation  131
8.3.1.4. Generated results  132
8.3.2. Quality evaluation of transportation systems using dominance-based rough sets  134
8.3.2.1. Problem definition  134
8.3.2.2. Evaluation of a transportation system  135
8.4. Conclusions  138
References  140

Spis treści
Cena
0,00
In order to arrange international shipping details and cost please contact wydawnictwa@agh.edu.pl